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Mean field renormalization group for the spin-; AX2 model 

Dirk Jan Bukman and J M J van Leeuwen 
Instituut-Lnrentz, Rijbuniversiteit le Leiden, PO Box %M, 23M RA Leiden, llIe Nelher- 
lands 

Received 24 October 1991 

AbstrscL Ihe mean field renonnalhation p u p  (MPRG) method is applied to Ihe spin-$ 
XYZ model. ?he phasc diagram is obtained for various lattice SINCIUAS in WO and 
three dimensions, as well as stimates for the critical exponenu. The mulls of the 
original MRG method are quite good, but the more sophislicaled approach that also 
includes surface exponents i not suitable for application io the small dustem used here. 

1. Intmduction 

The mean field renormalization group (MFRG) method introduced by Indekeu et a1 
(1, 21 has turned out to be a rather successful method for computing phase diagrams 
and critical properties of statistical models. The strength of this method lies in the fact 
that it gives quite good results (at least for the critical temperatures) at a relatively 
low computational cost. As a result it has been applied to a variety of classical and 
quantum spin systems. The relative simplicity of the method makes it possible to 
examine reasonably complicated models for a variety of lattice structures in two and 
three dimensions. In this paper we apply the MFRG method to the spin-f XXZ model, 
and draw some conclusions about its value in this case. 

The XXZ model is described by the reduced Hamiltonian 

The sum C(i,, is over nearest neighbour spins, and the up are Pauli matrices. If the 
zcoupling K ,  is positive (ferromagnetic), and larger than the zycoupling I<, the 
system has an Ising-like ferromagnetically ordered phase (FI), with a non-zero m a g  
netization along the z-axis. If the iy-coupling dominates, there is an ordered phase 
with a magnetization in the zy-plane (XY). If K ,  is negative (antiferromagnetic) an 
king-like phase with a non-zero staggered magnetization forms for bipartite lattices 
(AI). (For such lattices there is a symmetly between K and -IC, and hence between 
the ferromagnetic and antiferromagnetic XY phases. We will always take K positive 
in this case.) A lattice that is not bipartite cannot accommodate such a phase due 
to the frustration of the lattice. We will not consider the phases that form under 
such circumstances. The FI phase has already been discussed by Plascak 131, and we 
will extend the calculation to include the other phases as well. It turns out that the 
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behaviour of the MFRG €or theXY and AI phases is fundamentally diflerent from that 
for the FI phase. 

Additional interest in the Hamiltonian (1.1) derives fmm the fact that it is equiv- 
alent to that of a lattice gas of interacting hard-core bosons [4, 51, and it has been 
used to describe both superfluidity and superconductivity. 

D J B~kman and J M J van Leeuwen 

2. The mean field renormalization p u p  

In this section we will first describe the MFRG method as it applies to a simple Ising 
model, and then discuss the differences that arise when it is applied to the XXZ 
Hamiltonian (1.1). We alculate, for an Ising model with a coupling constant K 
and a magnetic field N, the magnetization n of a b i t e  cluster containing N spins, 
e.g. one of the clusters shown in figure 1. The magnetization is alculated in the 
presence of a symmetry breaking b u n d a y  condition, so that the cluster is embedded 
in an effective. magnetization m,, simulating the influence of the surrounding infinite 
lattice. Because of this effective magnetization the spins on the boundary of the 
cluster experience an extra effectiw surface field Hes = aKm,, with a the number 
of lattice points ouside the cluster that are adjacent to a boundary spin. (We only 
consider clusters, as in figure 1, where all spins are boundary spins, and all spins are 
equivalent. A generalization for a case where this is not sa is easily made.) The 
basic idea of the MFRG is to repeat this calculation for a different cluster of N' spins 
(N' < N), with different parameters IC', H', and mb, and view the results as if they 
were related by a scaling transformation. 

N = l  N = 2  N - 3  N = 4  N = 4  N = 6  

+re I. The dustera Ihat am uscd in Ihe calculadon. me single sile and the p ir  are 
uscd for all lallicen, the triangle for the eiangular and pcc lallicr+ lhc quare for the 
square and mbic lattices; the tetrahedron and d e  oclahedron Cor the PCC Istiice. 

Postulating finite size scaling for the two dusters leads to the following relation 
for fhe singular part of the free energy per spin, f = P F j N ,  in d dimemiom 

f'(I<'. H',H:,) = t d f ( K ,  H ,  He,). (2.1) 

The length rescaling factor 1 is discussed further on. The magnetization is given by 
m I - d f / d H ,  so differentiating (2.1) with respect to H we find 

m'(K',H',HLR) = td-Ynm(K,H,H,,) (2.2) 

with H' = t u "  H, where yH is the scaling exponent of the field H. Expanding (2.2) 
to first order in H and He* gives 

(2.3) 
(2.4) 
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where 

In obtaining (2.4) m, is supposed to scale like m, ie. mb = ed-YHm,, which in turn 
gives HLff = ol'K'mb = atK'moed-YH. 

If (2.4) has a fixed point K' = K = Kc, then (2.2) describes a scaling property 
of the magnetization near K = K,  and H = Heff  = 0 .  ?his point is identified with 
the critical point, which is given by the equation 

a'?'( KJ = a?( K,). (2.7) 

The scaling exponent yH follows from (2.3) at K' = h' = Kc. Because for the 
clusters that we use all spins are also boundary spins, we always have ? ( I ( )  = x( 1'). 
It then follows from (2.3) and (2.4) that y, Q given by 

By differentiating (2.4) with respect to K at the fixed point one finds 

The thermal exponent yT = l/u, defined by aKf/aK\K=KG = tuT, can be calcu- 
lated from this equation. 

It is not obvious what definition one should adopt for the length rescaling factor 
e, especially for small clusters. We use the original choice of Indekeu et 01 which 
is based on the number of spins in the cluster, e = ( N / N ' ) ' I d .  It is argued by 
Slotte [6] that the estimates of the critical exponents are improved if one considers 
the number of interactions instead, which leads to a different value for e. We will 
mmment on this in the discussion. 

A refinement of the MFRG method was proposed by Indekeu et a1 [2], who 
showed that, for large clusters, the effective magnetization m, should scale like 
mb = P s m o ,  with yHS the scaling exponent for a surface field. Combining this 
relation with (2.2) leads to 

a ~ ~ i ~ ( ~ ~ )  = ed-YH--YHSolr<?(K) (2.10) 

instead of (2.4), while (2.3) still holds. Because of the introduction of an extra 
unknown in (ZlO), one needs two equations to determine both d - yH - yHs and the 
fixed point self-consistently. These are obtained by considering three clusters of sizes 
N, N', and N", and imposing the scaling relations 
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and mb = eym,,, m{ = ttHSmb. This leads to unique values for d - y ,  -yHs and 
the fixed point, hut for yT, yH. and yHs one finds slightly different results from the 
two equations (2.11). 

When applying this method to the XXZ model, several changes take place. First, 
different ordered phases can occur in this model. The magnetization m must then 
be replaced by the order parameter of the phase under consideration; this can be 
the magnetization in either the rdirection or in the zy-plane, or the staggered 
magnetization. i n e  iieid ii mupies to tne order parameter, so it can be a magnetic 
field along the z;lxis or in the zy-plane, or a staggered field. In all cases, the order 
parameter is given by m = - a f / a H .  Second, the single coupling constant K is 
replaced by the pair (K, K , ) .  One now finds a fixed line K ( K , )  in the space 
of the two coupling constants instead of a single fixed point. As in the case of 
phenomenological renormalization [7, SI, this fixed line converges to the critical line 
for large cluster sizes. The values of y, and yT one finds from (2.3) and (2.9) will 
in general depend on the ratio K , / K .  This dependence, which is not in accordance 
with universality, should disappear when the cluster sizes increase. In addition, the 
value one finds for yT also depends on the way aK' /aK is defined in the (K, K,) 
plane. We will always take the derivative along a line K , / K  = constant, hut for 
large enough clusters any choice should lead to the correct value [SI. 
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3. Results of the hvo-eluster method 

The clusters we use are shown in figure 1. With these clusters we apply the MFRG 
method to the two-dimensional triangular and square lattices, and to the three- 
dimensional cubic and FCC lattices. We start by employing the simpler scheme using 
two clusters, since that gives more possibilities to compare results for different Sets of 
clusters. Also, it is reasonably well behaved, in contrast to the three-cluster scheme, 
which turns out to give unacceptable results in some cases when applied to the small 
clusters we use here. 

On applying the two-cluster scheme to the Hamiltonian (Ll), one immediately 
notices a difference in the behaviour of j i (  K) for the ~l phase on the one hand, and 
the XI' and phases on the other hand. In the FI phase, for the clusters in figure 1, 
j i ( K )  is monotonically increasing from one at K = 0 to some constant value for 
K - ca. In the AI and XY phases it has a maximum, after which it decreases to 
either zero (even N), or to some non-zero value (odd N). This reflects the fact that 
for the R phase the ground state of a cluster has the largest 'susceptibility' 2, while 
the ground states for the XY and AI phases have either j i  = 0, or a relatively small 
non-zero value. As a consequence, when comparing a?( K) for different clusters, as 
in (2.7), there can be additional fixed points apart from the one indicating the phase 
transition, caused by the re-crossing of az( K) for large K. In most cases there is 
a clear distinction between a solution of (2.7) indicating the phase transition, which 
clearly moves towards some limit for larger clusters, and the other zeros, which do 
UUL IIdVCi "ID >L4nr,g ~ l l d V I U U I  (3GG rlgurG L vf,lGlG UX\'', 0 D.1""ll I". U.l .rr 

lattice for various clusters). Moreover, these spurious zeros usually lie at such large 
values of K that they are far removed from the region where the phase transition 
takes place, and they will in general not show up in the phase diagrams shown. (An 
exception to this is the square lattice case, which is discussed further on.) 

--L I_ .L:- ---I:-- L-L-..: I--- f m r . r a  1 ... La-n ~ -7, lJ\ :r rhn.i,- Fnr tho wr 
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Figure Z llIe behaviour of oZ(K)  for heveral dusten in the FCC latlioe. N = 1 

interseaions near K = 0.1 give the various approximations for K,; the inle-tions BI 
higher K are the additional hxed points discussed in the wt. 

(-), N = 2 (. ..... ), N = 3 (---A N = 4 (---), N = 6 (- .-). ?he 

3.1. The triangular lattice 

The phase diagram obtained with the twocluster method for the triangular lattice is 
shown in figure 3. Around K = K ,  = 0 the system is in the disordered phase (D). 
When I(, is increased, ferromagnetic king order sets in (FI), while for increasing 
K the system enters the z-y ordered phase (AY). The parts of the phase diagram 
where an antiferromagnetic interaction dominates have been left blank, since we do 
not consider phases where frustration effects p!ay a m!e: A was a!ready shown in 
[3], the results for the FI boundary improve as the cluster size is increased. Although 
the critical coupling for the isotropic Heisenberg model (K = h;) remains finite, it 
increases rapidly with cluster size, tending towards the exact result Kc = 00. The X Y  
phase boundary is also Seen to move towards the series result for larger clusters [9]. 

The critical exponent yT is shown in figure 4. Again, the result improves with 
increasing cluster size, roughly approaching the exact result y, = 1 for the n tran- 
sition, yT = 0 for the isotropic Heisenberg case, and the series result yT = 0.7 for 
the XY phase [9]. Except for the region near K = K ,  where the cross-over between 
different values of yT takes place, the dependence on the anisotropy is slight. From 
(2.8) it is seen that in the two-cluster method y, does not depend on the coupling 
mnstants K and K ; .  The best estimate for the triangular lattice (N' = 2, N = 3) 
gives yH = 1.55, compared with the exact result yH = 1.875 for the FI boundary, 
ana a simiiar vaiue irom series expansions for the 3Z transition. 

3.2. The square lattice 

Fbr the square lattice we obtain the phase diagram shown in figure 5. It also includes 
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(1 
Figure 3. 'The phase diagram for the Piangular lattice. 'The dotted cuwe is lhe result 
for N' = 1 ,  N = 2, the h k e n  C U N ~  for N' = 1, N = 3, and the full curve for 
N' = 2 , N  = 3. I h e  uassed circles (@) represent exact and series expansion 191 
results. lkc lowcr Icft half of ihc phasc diagram, whem the dominant interaction is 
antifemmagnetic and wbere fruslration effects play a mle. is no1 Maled here. 

the antiferromagnetic king phase (AI), which occurs for large negative A;. We only 
plot the upper half of the phase diagram, which is symmetric under reflection in the 
line K = 0. Here again, the location of the ~l boundary improves as the cluster 
sizes are increased. The isotropic Heisenberg model has T, = 0, which is the exact 
result, for all cluster sizes. For the XY phase the spurious fixed points discussed 
above show up in the phase diagram. For the combinations N' = 1, N = 2 and 
N' = 1, N = 4 the XY phase boundary curves back for large IC, thus suggesting 
that the system re-enters the disordered phase at low temperature. For these values 
of N' and N the MFRG for the XY phase does not have a fixed point at T = 0. 
Instead, for a constant ratio K , / K  > -1, there is, in addition to the repulsive fixed 
p i n t  indicating the phase transition, an attractive fixed p i n t  at lower T. As IC, / K 
is decreased towards -1 these points approach each other, and they eventually meet 
alLU a,= a.IIIII'IIIOLC". ,lac JalllC IIayycLIJ ,"I LllC a, y11a3c W 1 1 C 1 ~  ,lz,Il ayynM*."CU 
-1 from below. This leaves a gap in the phase diagram around li, % -IC. For 
N' = 2, N = 4 there is a fixed p i n t  at T = 0, so there is no re-entrance into the 
disordered phase. The gap around IC, = -IC has remained in roughly the same 
position, giving support to the conclusion that there is a region around K, = -IC, 
in this last approximation given by -1.22 5 K Z / K  5 -0.55, where the disordered 
phase extends down to T = 0, flanked by XY and AI phases. 

The results for the exponent yT are similar to those for the triangular lattice, 
showing a reasonably flat plateau for the FI, AI, and XY phases, at values around 
respectively 0.8, 0.8, and 0.5 in the best approximation (N'  = 2, N = 4), and 
in this case dropping to zero for the isotropic Heisenberg model and in the region 

""A n_ """:%:l^+aA n- ""-~ L̂ ""-"̂  c.- .La .. "L.."̂ ... La-- c- I I/- ""...,.n,.lnr 
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Flgorr 4 The exponent gT for the viangular lattice, plotled along lhe phase boundaries 
in Bgure 3. The dolled curve is the m u l l  for N' = 1, N = 2 ,  the broken NNe for 
N' = l , N  = 3 ,  and the full N N ~  for N' = 2 , N  = 3.  The exacl and wries 191 
mulls are given by the chain a m e  and the crossed circle. 
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N' = 2 ,  N = 4. The crossed drcles mpresent exact and series expansion mulls [9]. 

around K = - K , .  The best estimate for yH gives yH = 1.59. 
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3.3. The three-dimensional Inttices 

The phase diagram for the three-dimensional lattices are shown in figures 6 and 7. 
For the cubic lattice there is some improvement as the cluster size is increased in 
most regions of the phase diagram. The exponent yT again slowly varies along the 
phase bounday, assuming values of approximately 0.8, 0.7 and 0.6 for the FI, XY 
and isotropic Heisenberg transitions in the best estimate (N' = 2, N = 4). while 
for the magnetic exponent we find yH = 1.98. As a comparison, field theoretical 
methods give y, = 1.59, 1.49 and 1.42, respectively, and yH = 2.48 [lo]. 

D J Bukman and J M J van Leeuwen 

K 

1 

-.3 -.l 0 .1 .2 .3 

Fl&wrr 6 The phase diagram for the NbiC lattice. n e  dotted curve is the result for 
N' = 1, N 5 2. the shon broken "e for N' = 1 ,  N = 4, and the long broken cuwe 
for N' = 2, N = 4. Also included in the mult of the threesluster method discussed 
in section 4, with N" = 1, N' = 2, N = 4 (full curve). The msvd cilrles represent 
the results of series expansions Ill]. 

For the FCC lattice we find that, in contrast to the general trend, the inclusion of 
the largest cluster (N = 6 )  does not give better results. This confirms the observation 
that, especially in lattices with high coordination numbers, the improvement is not 
always monotonic as the cluster size is increased [2, 121. For the exponents we find 
values that are slightly better than those for the cubic lattice. 

4. Results of the three-cluster method 

When applying the scheme using three clusters to the situations discussed above, one 
cannot a priori expect the results to be an improvement. Although this scheme does 
put the MFRG method on a sounder footing, and guarantees the convergence of large- 
cluster results, it is not necessarily an improvement for the small clusters used in the 
present calculation. In the first place, the assertion that the effective order parameter 
mo scales like a surface field only holds for large clusters. Second, whereas the 
location of Kc in the simpler method is independent of the length rescaling factor e,  
in the three-cluster scheme it does depend on e. The definition of e for small Ch~terS 
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..IS " ' 1  1 ' 1  ' 1  I ' 1  " ' 1  ' 1  ' 1  ' 1  " 1 " ' 1' 

K, 

\ 

-.15 -.l -.os 0 .OS .1 .15 

Pigvm 7. The dolled "!e is the mul l  
for N' = l , N  = 2, the broken "e for N' = 2 , N  = 3, the full "e for 
N' = 3, N = 4, and the chain curve for N' = 4,  N = 6. The CrOsFed circles lepresent 

The phase diagram for the FCC hltice. 

the rCIYlts of scrics apan*ons 1111. 

is rather arbitrary, and this arbitrariness affects the calculation of K,. For very large 
clusters the exact definition of e matters less, since there a variation of a few lattice 
spacings in the linear size of the cluster will not make a great deal of difference. For 
small clusters, however, a slight change in e can give quite different results. 

Especially for the XY and AI transitions the limitations of this scheme for small 
clusters will become apparent, since then also the large-K tails of %( K) come into 
piay. in  those instances wnere the difirences in cite nvo-ciuster scheme between the 
combinations N ,  N' and N ' ,  N" are small, the three-cluster scheme will only give a 
slight shift in the location of the phase boundary. When the two combinations give 
results that are further apart, the three-cluster scheme will also give a large shift, and 
may not even lead to acceptable results. 

A first instance of the difficulty of this more sophisticated scheme in dealing with 
small clusters is encountered for the triangular lattice. While the result for the FI 
boundary can be considered good, giving K,  = 0.235 for the pure Ising case, and 
shifting Kc for the isotropic Heisenberg model to infinity, even here we find some 
trouble, in the shape of an additional fvted point at high I<, for the pure king model 
located at K % 1.2. This point can be dismissed as clearly being outside the region 
of the real phase transition; the same cannot be said of the phase boundary one finds 
for the XY phase. This line describes a zigzag in the region between K Z ! K  = 1 
and K Z / K  = -1, which is clearly not a very sensible result. It shows that in this 
case the results of the threecluster scheme for small clusters should not be taken too 
seriously. Similar behaviour is found for the square lattice, where the differences in 
behaviour for the various combinations of cluster sizes are even greater than for the 
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triangular lattice. 
For the three-dimensional lattices the differences between the various combina- 

tions of clusters were rather small, and consequently the three-cluster method is 
better behaved for these lattices, only giving a small shift in the location of the phase 
boundary. For the cubic lattice, the resulting phase diagram is shown in figure 6, 
which does show an improvement over the twocluster method. In contrast to the 
two-cluster case, (2.8) does not hold now, so the exponent yH vanes slightly along 
the phase boundary. Its value does not improve noticeably when compared with the 
previous results, and neither does the estimate for the exponent yT. For the surface 
exponent one finds yHs = 1.1, compared with the field theoretical value 0.8 [13]. 

D I Bukman and J M J van Leeuwen 

plgurr (L n\e phase diagram tor the FCC lattice. 'Ik h t e d  a" U the RWlt far 
NI'= l ,N'=2,N=3, theful lrurvefar  N 1 l = 2 , N ' = 3 , N = 4 , a n d t h e h k e n  
a w e  for N" = 2 ,  N' = 4, N = 6. me aossed dnlcs represent the results of series 
crpansions [ll). 

The phase diagram for the FCC lattice, figure 8, is also better than the result of 
the two-cluster method. As in the previous section, we see that the combination of 
tine largest ciusters does not necessariiy give the best resuit. w-niie ior N" = 2, N' = 
3, N = 4 we find phase boundaries that are quite close to the series expansion 
estimates, the agreement becomes worse for N" = 2, N' = 4 , N  = 6, and the 
combination N" = 3, N' = 4, N = 6 fails to give a fixed line that one can identify 
with the phase boundary. The best estimates for the exponents are similar to those 
for the cubic lattice, and no great improvement Over the twocluster results. 

5. Discussfon 

We have seen that applying the two-cluster version of the MFRG method to the 
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XYZ model leads to quite good results for the phase diagram. It is certainly an 
improvement over the mean-field approximation, which gives the critical lines K = 
l/z and K ,  = fl/z. Both the d u e  of the critical coupling (see table 1 for an 
example) and the overall shape of the phase diagram are greatly improved when 
compared with this approximation. It is especially striking that for small clusters, 
where the computational effort is relatively small, the improvement over mean-field 
is already considerable. For larger clusters the results improve even further, but 
the convergence is not very fast. Also, especially for lattices with a high coordination 
number, where there are many possible ways to form larger clusters, the improvement 
is not always monotonic [2, 121. The critical exponents that one finds as a by-product 
of this method are only rough estimates; much more accurate values can be found 
by field-theoretical methods. The nature of the ordered phases is determined by 
the boundary condition employed to break the symmetry. So, the XY phase is an 
ordered pnase with a non-zero magnetization, whiie it is known that twodimensionai 
XY models exhibit a different type of long range order. Nevertheless, the MFRG result 
can be expected to give some indication of the location of the phase boundary. 

Tsbk L me critical mupling K, of a pure- f i - m o d e l  (K. = 0) on a cubic lattin, 
according to the mean field (MP), two-clusler MFRG (MPRGZ N',  N), threecluster MPRG 
(MPRG3) approximations, and the series m u l l  [HI. 

Mp MPPRGZ 1,2 MF'RG2 1.4 MpRG2 2,4 MFRG3 1,2,4 Series 

K ,  ai67 0.224 0.226 0.227 0.235 0.248 

Thnr !he pe?p-rfnnrm...e nf the M9.G !!?et!!%! fer the (y7 me&!, which exhibit.? 
different types of ordering, and is an essentially quantum mechanical model, is about 
the'same as for the classical king model. There are some differences, though, which 
mostly become apparent at low temperatures. For the XY and AI phases one might 
find additional fixed points, as discussed in section 3. These p in t s  lie at high values 
of K, and usually do not interfere with the phase diagram. But for IOW dimensions 
and/or low coordination numbers, when K,  itself is relatively high, as in the case of 
the square lattice, they do show up in the phase diagram for some combinations of 
clusters. Even there, the phase boundaries one finds for these clusters are not radically 
different from what one finds for a combination that does not lead to additional fixed 
pin ts .  It may be remarked that the appearance of spurious zeros is also noticed 
in the pair approximation of the cluster variation method [14, U]. In fact, the case 
N' = l , N  = 2 of the MFRG is equivalent to this approximation, just as for the 
classical pure Ising model it is equivalent to the Bethe-Peierls approximation. 

The three-cluster version of the MFRG method is less successful for the X X Z  
model. One reason for this is that the method is geared to the use of large clusters; 
neither the introduction of a surface exponent yHS nor the role played by the length 
rescaling factor t are compatible with the use of small clusters. If one examines the 
values of yH and y,, for the three-dimensional lattices, one finds that yHs EC: d - yH, 
which is the relation that would follow from the method without a surface exponent. 
So for small clusters the effective field does not really scale as a surface field. Also, 
the arbitrariness in defining t for small clusters affects the location of the phase 
boundary. 

In the case of the x.yZ model there is the extra complication of the spurious 
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fixed points that occur at high K. Especially for the two-dimensional lattices, where 
they are closest to the region of the phase transition, this has an effect on the 
calculation of the phase boundary. For example, combining the approximations with 
N‘ = 1, N = 2 and N’ = 2, N = 4 for the square lattice, which behave differently 
for large A‘, cannot be expected to give a consistent result. In three dimensions the 
influence of these fixed points is less noticeable, since they are farther removed from 
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improve the value for the exponents. According to this definition, one should consider 
the number of interactions in a cluster, including the ones with the surrounding 
effective magnetization. The resulting value for e is in general smaller than the one 
following from the definition that we used, and consequently the exponents are larger 
and closer to the expected values. However, if one tries to use this new definition of 
e in the threecluster scheme, where the location of the phase boundary depends on 
it, the phase diagram is totally distorted and the original definition turns out to be 
far superior. 
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