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Abstract. The mean field renormalization group (MFRG) method is applied to the spin-%
XXZ model. The phase diagram is obtained for various latlice structures in two and
three dimensions, as well as estimates for the critical exponents. The results of the
original MFRG method are quite good, but the more sophisticated approach that also
includes surface exponents is not suitable for application to the small clusters used here.

1. Introduction

The mean field renormalization group (MFRG) method introduced by Indekeu er al
{1, 2] has turned out to be a rather successful method for computing phase diagrams
and critical properties of statistical models. The strength of this method lies in the fact
that it gives quite good results (at least for the critical temperatures) at a relatively
low computational cost. As a result it has been applied to a variety of classical and
quantum spin systems. The relative simplicity of the method makes it possible to
examine reasonably complicated models for a variety of lattice structures in two and
threc dimensions. In this paper we apply the MFRG method to the spin-1 XXZ model,
and draw some conclusions about its value in this case.
The XXZ model is described by the reduced Hamiltonian

-BH =) K(ofof+alo!)+ K,afc}. (L1
{is)

The sum E  is over nearest neighbour spins, and the o are Pauli matrices. If the
z-coupling K is positive (ferromagnetic), and larger than the xy-coupling K, the
system has an Ising-like ferromagnetically ordered phase (FI), with a non-zero mag-
netization along the z-axis. If the zy-coupling dominates, there is an ordered phase
with a magnetization in the zy-plane (XY). If K, is negative (antiferromagnetic) an
Ising-like phase with a non-zero staggered magnetization forms for bipartite lattices
(a1). (For such lattices there is a symmetry between K and — K, and hence between
the ferromagnetic and antiferromagnetic XY phases. We will always take K positive
in this case.) A lattice that is not bipartite cannot accommodate such a phase due
to the frustration of the lattice. We will not consider the phases that form under
such circumstances. The FI phase has already been discussed by Plascak [3], and we
will extend the calculation to include the other phases as well. It turns out that the
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behaviour of the MFRG for the XY and A phases is fundamentally different from that
for the FI phase.

Additional interest in the Hamiltonian (1.1) derives from the fact that it is equiv-
alent to that of a Jattice gas of interacting hard-core bosons [4, 5], and it has been
used to describe both superfluidity and superconductivity.

2, The mean field renormalization group

In this section we will first describe the MFRG method as it applies to a simple Ising
mode], and then discuss the differences that arise when it is applied to the XXZ
Hamiltonian (1.1}, We calcuiate, for an Ising model with a coupling constant K
and a magnetic field H, the magnetization m of a finite cluster containing N spins,
¢.g. one of the clusters shown in figure 1. The magnetization is calculated in the
presence of a symmetry breaking boundary condition, so that the cluster is embedded
in an effective magnetization mg, simulating the influence of the surrounding infinite
lattice. Because of this effective magnetization the spins on the boundary of the
cluster experience an extra effective surface field H .o = af'mg, with o the number
of lattice points outside the cluster that are adjacent to a boundary spin. (We only
consider clusters, as in figure 1, where all spins are boundary spins, and all spins are
equivalent. A generalization for a case where this is 1ot so is casily made.) The
basic idea of the MFRG 18 to repeat this calculation for a different cluster of N’ spins
{N' < N), with different parameters /', H', and mj, and view the results as if they
were related by a scaling transformation.

A
N=4 N=¢

N=1 N=2 N=3 N=4

Figure 1. The clusters thal are used in the calculation. The single sitc and 1he pair are
used for all (attices; the triangle for the wiangular and PCe lattices; the square for the
square and cubic lattices; the tetrahedron and the octahedron for the FCC [attice.

Postulating finite size scaling for the two clusters leads to the following relation
for the singular part of the free energy per spin, f = B8F/N, in 4 dimensions

f’(fi”,H', ;ﬂ')=£df(K! HsHeﬂ‘)' (21)

The length rescaling factor £ is discussed further on. The magnetization is given by
= ~8f/8H, so differentiating (2.1) with respect to H we find

m/ (K H  Hlg) = £ "m(K, H, Hgq) (2.2)

with H' = £¥% H, where y,, is the scaling exponent of the field H. Expanding (2.2)
to first order in H and H 5 gives

X' (K') = ¢33 x(K) (2.3)
o K'X'(K') = a K¥(K) {2.4)
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where
dm(K,H,0)
Ky= ——~~21 "7 .
x(K) oy W 2:5)
-y ope dm(K,0, H 5)
XK)=s — 7= . 2.6
( aHeff Het=0 ( )

In obtaining (2.4) mn, is supposed to scale like m, ie. mj) = €4-¥#m,, which in turn
gives H g = o' K'm) = o' K'm¢d-vn,

If (2.4) has a fixed point K' = K = K, then (2.2) describes a scaling property
of the magnetization near K = K_ and H = H,g = 0. This point is identified with
the critical point, which is given by the equation

o' XK. = aX(K.). 2.7

The scaling exponent y;; follows from (2.3} at X' = K = K_. Because for the
clusters that we use all spins are also boundary spins, we always have X¥{K) = x(K).
It then follows from (2.3) and (2.4) that yy &8 given by

K.) o
291 — ech_ =2 2.8
x'(K.) o @8

By differentiating (2.4) with respect to K at the fixed point one finds

} K’
k=k.] OK

—r g . OX(K
=a{x(ftc)+ K. _,2;,(}7_1 } 2.9)
l (2 3N |K=K:J

X' (K')

a {x(Kc)+Kc e

K=K,

The thermal exponent yp = 1/, defined by 8K*'JOK |k _, = €Y7, can be calcu-
lated from this equation.

It is not obvious what definition one should adopt for the length rescaling factor
¢, especially for small clusters. We use the original choice of Indekeu et al which
is based on the number of spins in the cluster, £ = (N/N')}/4, Tt is argued by
Slotte [6] that the estimates of the critical exponents are improved if one considers
the number of interactions instead, which leads to a different value for £. We will
comment on this in the discussion.

A refinement of the MFRG method was proposed by Indekeu er al [2], who
showed that, for large clusters, the effective magnetization m, should scale like
m{ = €¥ism,, with yyo the scaling exponent for a surface field. Combining this
relation with (2.2) leads to

o K'F(K') = g3-yn-yns o [CK(K) (2.10)

instead of (2.4), while (2.3) still holds. Because of the introduction of an extra
unknown in (2.10), one needs two equations to determine both d — yy — yys and the
fixed point self-consistently. Thesc are obtained by considering three clusters of sizes
N, N’', and N”, and imposing the scaling relations

m(K', H', Hlg) = & V"m(K, H, H.q)

"e | N il __ed—yu "K' H . H (2'11)
m("iHa eff)"'z m( 3 aeﬁ‘)
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and mf = £"mg, m{ = £3"*mg. This leads to unique values for d -y — 35 and
the fixed point, but for yp, yy, and yyg one finds slightly different results from the
two equations (2.11).

When applying this method to the XXZ model, several changes take place. First,
different ordered phases can occur in this model. The magnetization m must then
be replaced by the order parameter of the phase under consideration; this can be
the magnetization in either the z-direction or in the xry-plane, or the staggered
magnetization. The field H coupies to the order parameter, so it can be a magnetic
field along the z-axis or in the zy-plane, or a staggered field. In all cases, the order
parameter is given by m = —9f/8H. Second, the single coupling constant K is
replaced by the pair (K, K ). One now finds a fixed line K(K,) in the space
of the two coupling constants instead of a single fixed point. As in the case of
phenomenological renormalization [7, 8], this fixed line converges to the critical line
for large cluster sizes. The values of yy and yp one finds from (2.3) and (2.9) will
in general depend on the ratio K, /K. This dependence, which is not in accordance
with universality, should disappear when the cluster sizes increase. In addition, the
value one finds for y also depends on the way 8 K'/8 K is defined in the (K, K,)
plane. We will always take the derivative along a line K ,/K = constant, but for
large enough clusters any choice should lead to the correct value [8],

3. Results of the two-cluster method

The clusters we use are shown in figure 1. With these clusters we apply the MFRG
method to the two-dimensional triangular and square lattices, and to the three-
dimensional cubic and Fcc lattices. We start by employing the simpler scheme using
two clusters, since that gives more possibilities to compare results for different sets of
clusters. Also, it is reasonably well behaved, in contrast to the three-cluster scheme,
which turns out to give unacceptable results in some cases when applied to the small
clusters we use here.

On applying the two-cluster scheme to the Hamiltonian (1.1), one immediately
notices a difference in the behaviour of X( K') for the F1 phase on the one hand, and
the XY and Al phases on the other hand. In the FI phase, for the clusters in figure 1,
X(K) is monotonically increasing from one at K = 0 to some constant value for
K — oo. In the Al and XY phases it has a maximum, after which it decreases to
either zero (even N), or to some non-zero value (odd N). This reflects the fact that
for the F1 phase the ground state of a cluster has the largest ‘susceptibility’ , while
the ground states for the XY and Al phases have ecither X = 0, or a relatively small
non-zero value. As a consequence, when comparing oX( K') for different clusters, as
in (2.7), there can be additional fixed points apart from the one indicating the phase
transition, caused by the re-crossing of aX(K) for large K. In most cases there is
a clear distinction between a solution of (2.7) indicating the phase transition, which
clearly moves towards some limit for larger clusters, and the other zeros, which do
noi have this amuug behaviour \acc« uguu; 2 where u,(\ f‘l; is shown for the FCC
lattice for various clusters). Moreover, these spurious zeros usually lie at such large
values of K that they are far removed from the region where the phase transition
takes place, and they will in general not show up in the phase diagrams shown. (An
exception to this is the square lattice case, which is discussed further on.)
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Figure 2. The behaviour of ax (K} for several clusters in the Foc latticee N =1
—)y N=2¢-), N=3(-=-), N=4(———), N=6(—-—). The
intersections near K" = 0.1 give the various approximations for K; the intersections at
higher K are the additional fixed points discussed in the text.

3.1. The miangular lattice

The phase diagram obtained with the two-cluster method for the triangular lattice is
shown in figure 3. Around K = K, = 0 the system is in the disordered phase (D).
When K, is increased, ferromagnetic Ising order sets in (FI), while for increasing
K the system enters the r—y ordered phase (XY). The parts of the phase diagram
where an antiferromagnetic interaction dominates have been left blank, since we do
not consider phases where frustration effects play a role. As was already shown in
[3], the results for the FI boundary improve as the cluster size is increased. Although
the critical coupling for the isotropic Heisenberg model (K = K,) remains finite, it
increases rapidly with cluster size, tending towards the exact result X_ = co. The XY
phase boundary is also seen to move towards the series result for larger clusters [9].

The critical exponent yr is shown in figure 4. Again, the result improves with
increasing cluster size, roughly approaching the exact result yp = 1 for the FI tran-
sition, y1 = 0 for the isotropic Heisenberg case, and the series result y = 0.7 for
the XY phase [9]. Except for the region near K = K, where the cross-over between
different values of yp takes place, the dependence on the anisotropy is slight. From
(2.8) it is seen that in the two-cluster method yg; does not depend on the coupling
constants X and K,. The best estimate for the triangular lattice (N’ = 2, N = 3)
gives y; = 1.55, compared with the exact result y,; = 1.875 for the FI boundary,
and a similar value from series expansions for the XY transition.

3.2. The square lattice
For the square lattice we obtain the phase diagram shown in figure 5. It also includes
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Figure 3. The phase diagram for the triangular lattice. The dotted curve is the result
for N' =1, N = 2, the broken curve for N’ = 1, N = 3, and the full curve for
N’ = 2,N = 3. The crossed circles (®) represent exact and series expansion [9)
results, The lower left half of the phase diagram, where the dominant interaction is
antiferromagnetic and where frustration effects play a role, is not treated here.

the antiferromagnetic Ising phase (Al), which occurs for large negative K,. We only
plot the upper half of the phase diagram, which is symmetric under reflection in the
line K = 0. Here again, the location of the FI boundary improves as the cluster
sizes are increased. The isotropic Heisenberg model has 7, = 0, which is the exact
result, for all cluster sizes. For the XY phase the spurious fixed points discussed
above show up in the phase diagram. For the combinations &' = 1, N = 2 and
N' = 1,N = 4 the XY phase boundary curves back for large I, thus suggesting
that the system re-enters the disordered phase at low temperature. For these values
of N’ and N the MFRG for the XY phase does not have a fixed point at T' = 0.
Instead, for a constant ratio K, /K > —1, there is, in addition to the repulsive fixed
point indicating the phase transition, an attractive fixed point at lower T. As K, /K
is decreased towards —1 these points approach each other, and they eventually meet
and are annihilated. The same happens for the Al phase where I,/K approaches
-1 from below. This leaves a gap in the phase diagram around K, ~ —K. For
N'=2,N = 4 there is a fixed point at T = 0, so there is no re-entrancc into the
disordered phase. The gap around K, = - K has remained in roughly the same
position, giving support to the conclusion that there is a region around K, = - K,
in this last approximation given by ~1.22 < K,/ K < -0.55, where the disordered
phase extends down to T = 0, flanked by XY and Al phases.

The results for the exponent yr are similar to those for the triangular lattice,
showing a reasonably fiat plateau for the FI, Al, and XY phases, at values around
respectively 0.8, 0.8, and 0.5 in the best approximation (N’ = 2, N = 4}, and
in this case dropping to zero for the isotropic Heisenberg model and in the region



bid

MFRG for the spin-1 XXZ model 4291

K/K, K./¥

Figure 4 The exponent yr for the triangular lattice, plotted along the phase boundaries
in figure 3. The dotted curve is the result for N/ = 1, N = 2, the broken curve for
N'=1,N = 3, and the full curve for N’ = 2, N = 3. The exact and series [9]
results are given by the chain curve and the crossed circle.

I,'{II".I". T T T iI_F_T[iI
' -

<

|
-2 o 2
K

Figure 5. The phase diagram for the square lattice, The dotted curve is the result
for N' = 1, N = 2, the broken curve for N' = 1, N = 4, and the fuli curve for
N'=2, N = 4. The crossed drcles represent exacl and series expansion results [9].

around K = — K ,. The best estimate for yy gives yy = 1.59.
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3.3. The three-dimensional lattices

The phase diagrams for the three-dimensional lattices are shown in figures 6 and 7.
For the cubic lattice there is some improvement as the cluster size is increased in
most regions of the phase diagram. The exponent y again slowly varies along the
phase boundary, assuming values of approximately 0.8, 0.7 and 0.6 for the FI, XY
and isotropic Heisenberg transitions in the best estimate (N' = 2, N = 4), while
for the magnetic exponent we find yy; = 1.98. As a comparison, field theoretical
methods give yp = 1.59, 1.49 and 1.42, respectively, and yy = 2.48 [10].

Figure 6 The phase diagram for the cubic lattice. The dotted curve is the result for
N'=1, N = 2, the short broken curve for N' = 1, N = 4, and the long broken curve
for N’ = 2, N = 4. Also included is the result of the three-Cluster method discussed
in section 4, with N/ = 1, N’ = 2, N = 4 (full curve). The crossed circles represent
the results of series expansions [11}.

For the Fcc lattice we find that, in contrast to the general trend, the inclusion of
the largest cluster (N = 6) does not give better results. This confirms the observation
that, especially in lattices with high coordination numbers, the improvement is not
always monotonic as the cluster size is increased [2, 12). For the exponents we find
values that are slightly better than those for the cubic lattice.

4. Results of the three-cluster method

When applying the scheme using three clusters to the situations discussed above, one
cannot a priori expect the results to be an improvement. Although this scheme does
put the MFRG method on a sounder footing, and guarantees the convergence of large-
cluster results, it is not necessarily an improvement for the smalt clusters used in the
present calculation. In the first place, the assertion that the effective order parameter
my scales like a surface field only holds for large clusters. Second, whereas the
location of K_ in the simpler method is independent of the length rescaling factor £,
in the three-cluster scheme it does depend on £. The definition of £ for small clusters
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Figure 7. The phase diagram for the FCC lattice. The dotted curve is the result
for N' = 1,N = 2, the broken curve for N' = 2, N = 3, the full curve for
N'= 3, N = 4, and the chain curve for N/ = 4, N = 6. The crossed circles represent
the results of scries cxpansions [11].

is rather arbitrary, and this arbitrariness affects the calculation of K_. For very large
clusters the exact definition of £ matters less, since there a variation of a few lattice
spacings in the linear size of the cluster will not make a great deal of difference. For
small clusters, however, a slight change in £ can give quite different results.

Especially for the XY and AI transitions the limitations of this scheme for small
clusters will become apparent, since then also the large-K tails of X( K’} come into
play. In those instances where the differences in the two-cluster scheme between the
combinations N, N’ and N’, N* are small, the three-cluster scheme will only give a
slight shift in the location of the phase boundary, When the two combinations give
results that are further apart, the three-cluster scheme will also give a large shift, and
may not even lead to acceptable results.

A first instance of the difficulty of this more sophisticated scheme in dealing with
small clusters is encountered for the triangular lattice. While the result for the FI
boundary can be considered good, giving K, = 0.235 for the pure Ising case, and
shifting K, for the isotropic Heisenberg model to infinity, even here we find some
trouble, in the shape of an additional fixed point at high K, for the pure Ising model
located at K = 1.2. This point can be dismissed as clearly being outside the region
of the real phase transition; the same cannot be said of the phase boundary one finds
for the XY phase. This line describes a zig-zag in the region between K, /K =1
and K,/K = -1, which is clearly not a very sensible result. It shows that in this
case the results of the three-cluster scheme for small clusters should not be taken too
seriously. Similar behaviour is found for the square lattice, where the differences in
behaviour for the various combinations of cluster sizes are even greater than for the
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triangular lattice.

For the three-dimensional lattices the differences between the various combina-
tions of clusters were rather small, and consequently the three-cluster method is
better behaved for these lattices, only giving a small shift in the Jocation of the phase
boundary. For the cubic lattice, the resulting phase diagram is shown in figure 6,
which does show an improvement over the two-cluster method. In contrast to the
two-Cluster case, (2.8) does not hold now, so the exponent y, varies slightly along
the phase boundary. Its value does not improve noticeably when compared with the
previous results, and neither does the estimate for the exponent y;. For the surface
exponent one finds yyg = 1.1, compared with the field theoretical value 0.8 [13].
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Figure & The phase diagram for the Fec lattice. The dotted curve is the result for
N"=1,N'=2,N =3, the full curve for N = 2,N'= 3, N = 4, and the broken
curve for N = 2, N' = 4, N = 6. The crossed circles represent the results of series
expansions [11].

The phase diagram for the FCC lattice, figure 8, is also better than the result of
the two-cluster method. As in the previous section, we see that the combination of
the largest clusters does not necessarily give the best resuit. While for ¥ =2, N =
3,N = 4 we find phase boundaries that are quite close to the series expansion
estimates, the agreement becomes worse for N = 2,N' = 4,N = 6, and the
combination N = 3, N’ = 4, N = 6 fails to give a fixed line that one can identify
with the phase boundary. The best estimates for the exponents are similar to those
for the cubic lattice, and no great improvement over the two-cluster results.

5. Discussion

We have seen that applying the two-cluster version of the MFRG method to the
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XXZ model leads to quite good results for the phase diagram. It is certainly an
improvement over the mean-field approximation, which gives the critical lines K =
1/z and K, = +1/2. Both the value of the critical coupling (see table 1 for an
example) and the overall shape of the phase diagram are greatly improved when
compared with this approximation. It is especially striking that for small clusters,
where the computational effort is relatively small, the improvement over mean-ficld
is already considerable. For larger clusters the results improve even further, but
the convergence is not very fast. Also, especially for lattices with a high coordination
number, where there are many possible ways to form larger clusters, the improvement
is not always monotonic [2, 12]. The critical exponents that one finds as a by-product
of this method are only rough estimates; much more accurate values can be found
by field-theoretical methods. The nature of the ordered phases is determined by
the boundary condition employed to break the symmetry. So, the XY phase is an
ordered phase with a non-zero magnetization, while it is known that two-dimensional
XY models exhibit a different type of long range order. Nevertheless, the MFRG result
can be expected to give some indication of the location of the phase boundary.

Table L The critical coupling K, of a pure XY-model (K = 0) on a cubic lattice,
according to the mean field (MF), two-cluster MFRG (MFRG2 N', V), threecluster MFRG
(MFRG}) approximations, and the series result [11].

MF MFRG2 1,2 MFRG2 1,4 MFRG2 2,4 MFRG3 12,4 Series

K. 0.167 0.224 0.226 0.227 0.235 0.248

Thus the performance of the MFRG method for the XX¥Z7 model, which exhibits
different types of ordering, and is an essentially quantum mechanical model, is about
the same as for the classical Ising model. There are some differences, though, which
mostly become apparent at low temperatures. For the XY and Al phases one might
find additional fixed points, as discussed in section 3. These points lie at high values
of K, and usually do not interfere with the phase diagram. But for low dimensions
and/or low coordination numbers, when K itself is relatively high, as in the case of
the square lattice, they do show up in the phase diagram for some combinations of
clusters. Even there, the phase boundaries one finds for these clusters are not radically
different from what one finds for a combination that does not lead to additional fixed
points. It may be remarked that the appearance of spurious zeros is also noticed
in the pair approximation of the cluster variation method [14, 15]. In fact, the case
N' = 1, N = 2 of the MFRG is equivalent to this approximation, just as for the
classical pure Ising model it is equivalent to the BethePeierls approximation.

The three-cluster version of the MFRG method is less successful for the XXZ
model. One reason for this is that the method is geared to the use of large clusters;
neither the introduction of a surface exponent yyg nor the role played by the length
rescaling factor £ are compatible with the use of smali clusters. If one examines the
values Of yy; and yy for the three-dimensional lattices, one finds that yyg &~ d ~ yy,
which is the relation that would follow from the method without a surface exponent,
So for small clusters the effective ficld does not really scale as a surface field. Also,
the arbitrariness in defining £ for small clusters affects the location of the phase
boundary.,

In the case of the XXZ model there is the extra complication of the spurious
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fixed points that occur at high K. Especially for the two-dimensional lattices, where
they are closest to the region of the phase transition, this has an effect on the
calculation of the phase boundary. For example, combining the approximations with
N' =1,N =2 and N’ =2, N = 4 for the square lattice, which behave differently
for large K, cannot be expected to give a consistent result. In three dimensions the
influence of these fixed points is less noticeable, since they are farther removed from
K,

c”
___________ PR [ | PP

A suggestion has been made [6] for a different estimate for £, which would
improve the value for the exponents. According to this definition, one should consider
the number of interactions in a cluster, including the ones with the surrounding
effective magnetization. The resulting value for £ is in peneral smaller than the one
following from the definition that we used, and consequently the exponents are larger
and closer to the expected values. However, if one tries to use this new definition of
£ in the three-cluster scheme, where the location of the phase boundary depends on

it, the phase diagram is totally distorted and the original definition turns out to be
far superior.
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